If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x+340=0
a = 1; b = -40; c = +340;
Δ = b2-4ac
Δ = -402-4·1·340
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{15}}{2*1}=\frac{40-4\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{15}}{2*1}=\frac{40+4\sqrt{15}}{2} $
| -3=-6+w | | 1^(x+1)=x | | 3x+8=4x+(-2) | | q^2+10q-56=0 | | 2.10m+5=49 | | 5x+2=28-7x | | 1.5x+8.25=3+3.25x | | N^2+6n-12=2n+7 | | .25x=3*650 | | .25/3=650/x | | 7*x=13 | | 2a+3 +2a=4 | | .25x=2400 | | n-(-13)=253 | | n+(-3)=30 | | 61-1x=9x-101 | | 4x-15=20-1x | | 6y=9/24 | | c/6+16=23 | | c+22/6=6 | | 46=u/3+39 | | 26=42-2j | | (√x+3)=x-9 | | 16x-14=15x+14 | | -5x+25=-75 | | 6x+50=230 | | 6x+50=240 | | 2x-16=14x+2 | | 11=s/4+7 | | 4x-70=90 | | (y-4)(y-4)-7(2-y)=(y+5)(y-2) | | 6x=13=25 |